

Thermodynamics of Energy Conversion and Storage

Prof. Dr. Andreas ZÜTTEL

Assistant: Yasemen Kuddusi

EXERCISES 7

1) Estimate the energy density in the isotopes e.g. ^{235}U .

$$(8.7-7.5) \text{ MeV} \cdot 235 \cdot 6 \cdot 10^{23} / 235 \text{ g} = 1.2 \cdot 6 \cdot 10^{23} \cdot 10^6 \cdot 1.6 \cdot 10^{-19} / 0.001 \text{ kg/g} / 3600 \text{ s/h} = 32 \text{ GWh/kg}$$

2) Calculate the number of fissions N after 1 second if K = 1.01. ?

τ : life time of a neutron generation (10^{-4} s)

K : growth factor

$$N = N_0 \cdot e^{\frac{(K-1) \cdot t}{\tau}}$$

$$K = \frac{N_{i+1}}{N_i}$$

$$N = 1 \cdot \exp(0.01 \cdot 1 / 0.0001) = 2 \cdot 10^{43}$$

3) Calculate the amount of coal necessary for a power plant with a power of 1 GW_{el}. and an efficiency of 25% and compare to the amount of nuclear fuel.

Coal: 15 kWh/kg

^{235}U : $32 \cdot 10^6$ kWh/kg

The energy density of ^{235}U is $2 \cdot 10^6$ times greater than the one of coal.

$$P = 10^6 \text{ kW} / 0.25 \cdot 24 \text{ h} \cdot 365 \text{ days/year} = 3.5 \cdot 10^{10} \text{ kWh/year}$$

$$m(C) = 3.5 \cdot 10^{10} \text{ kWh/year} / 15 \text{ kWh/kg} = 2.33 \text{ Mio. t/year} = 6400 \text{ t/day}$$

$$m(^{235}\text{U}, 4\%) = 3.5 \cdot 10^{10} \text{ kWh/year} / 32 \cdot 10^6 \text{ kWh/kg} / 0.04 = 27 \text{ t/year}$$

4) Calculate the amount of water evaporated from a nuclear power plant with a power of 1 GW_{el}. and an efficiency of 25% ($\Delta H_{\text{vap}}(\text{H}_2\text{O}) = 2200 \text{ kJ/kg}$).

$$3 \text{ GW} = 3 \cdot 10^6 \text{ kW} = 3 \cdot 10^9 \text{ kJ/s}$$

$$(3 \cdot 10^9 \text{ kJ/s}) / (2200 \text{ kJ/kg}) = 1363 \text{ kg/s}$$

5) Calculate the half life time for the sum of the isotopes in nuclear waste.

10 years: 10^{12} Bq/kg

10'000'000 years 10^7 Bq/kg

$$N = N_0 \cdot \exp(-k \cdot t) \rightarrow \ln(10^7 / 10^{12}) / 10'000'000 = -k \rightarrow k = 1.15 \cdot 10^{-6}$$

$$\ln(2) / k = t_{1/2} \rightarrow t_{1/2} = 6 \cdot 10^5 \text{ years}$$